PGR5 Is Involved in Cyclic Electron Flow around Photosystem I and Is Essential for Photoprotection in Arabidopsis

نویسندگان

  • Yuri Munekage
  • Masaya Hojo
  • Jörg Meurer
  • Tsuyoshi Endo
  • Masao Tasaka
  • Toshiharu Shikanai
چکیده

During photosynthesis, plants must control the utilization of light energy in order to avoid photoinhibition. We isolated an Arabidopsis mutant, pgr5 (proton gradient regulation), in which downregulation of photosystem II photochemistry in response to intense light was impaired. PGR5 encodes a novel thylakoid membrane protein that is involved in the transfer of electrons from ferredoxin to plastoquinone. This alternative electron transfer pathway, whose molecular identity has long been unclear, is known to function in vivo in cyclic electron flow around photosystem I. We propose that the PGR5 pathway contributes to the generation of a Delta(pH) that induces thermal dissipation when Calvin cycle activity is reduced. Under these conditions, the PGR5 pathway also functions to limit the overreduction of the acceptor side of photosystem I, thus preventing photosystem I photoinhibition.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

How does cyclic electron flow alleviate photoinhibition in Arabidopsis?

Cyclic electron flow (CEF) around photosystem I has a role in avoiding photoinhibition of photosystem II (PSII), which occurs under conditions in which the rate of photodamage to PSII exceeds the rate of its repair. However, the molecular mechanism underlying how CEF contributes to photoprotection is not yet well understood. We examined the effect of impairment of CEF and thermal energy dissipa...

متن کامل

The role of PGR5 in the redox poising of photosynthetic electron transport.

The pgr5 mutant of Arabidopsis thaliana has been described as being deficient in cyclic electron flow around photosystem I, however, the precise role of the PGR5 protein remains unknown. To address this issue, photosynthetic electron transport was examined in intact leaves of pgr5 and wild type A. thaliana. Based on measurements of the kinetics of P700 oxidation in far red light and re-reductio...

متن کامل

Thioredoxin m4 controls photosynthetic alternative electron pathways in Arabidopsis.

In addition to the linear electron flow, a cyclic electron flow (CEF) around photosystem I occurs in chloroplasts. In CEF, electrons flow back from the donor site of photosystem I to the plastoquinone pool via two main routes: one that involves the Proton Gradient Regulation5 (PGR5)/PGRL1 complex (PGR) and one that is dependent of the NADH dehydrogenase-like complex. While the importance of CEF...

متن کامل

Partially dissecting the steady-state electron fluxes in Photosystem I in wild-type and pgr5 and ndh mutants of Arabidopsis

Cyclic electron flux (CEF) around Photosystem I (PS I) is difficult to quantify. We obtained the linear electron flux (LEFO2) through both photosystems and the total electron flux through PS I (ETR1) in Arabidopsis in CO2-enriched air. ΔFlux = ETR1 - LEFO2 is an upper estimate of CEF, which consists of two components, an antimycin A-sensitive, PGR5 (proton gradient regulation 5 protein)-depende...

متن کامل

PROTON GRADIENT REGULATION5 is essential for proper acclimation of Arabidopsis photosystem I to naturally and artificially fluctuating light conditions.

In nature, plants are challenged by constantly changing light conditions. To reveal the molecular mechanisms behind acclimation to sometimes drastic and frequent changes in light intensity, we grew Arabidopsis thaliana under fluctuating light conditions, in which the low light periods were repeatedly interrupted with high light peaks. Such conditions had only marginal effect on photosystem II b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cell

دوره 110  شماره 

صفحات  -

تاریخ انتشار 2002